Multiple Target Tracking Using Likelihood Particle Filtering and Adaptive Waveform Design

نویسندگان

  • I. Kyriakides
  • T. Trueblood
  • Darryl Morrell
  • A. Papandreou-Suppappola
چکیده

In multiple target tracking with radar, weak target measurements are often hard to observe due to masking by sidelobes of measurements from stronger targets. The result is lost tracks and deteriorated joint tracking performance. In this work, we design configurable waveforms and adjust the positioning of their ambiguity function (AF) sidelobes to unmask weak targets and improve tracking performance. To track multiple targets, we develop a tracker that is based on the likelihood particle filter and the independent partitions proposal method. The proposed independent partitions likelihood particle filter (IPLPF) accurately processes the high resolution measurements resulting from the use of Björck CAZAC sequences that we use to construct our configurable waveforms and tracks a fixed and known number of targets. We provide simulation results that demonstrate the improvement in tracking performance of multiple targets when using adaptively configured MCPC Björck CAZAC waveforms versus using non-adaptive configurations or single Björck CAZACs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks

Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...

متن کامل

Multiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization

A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...

متن کامل

Multiple Target Tracking With Constrained Motion Using Particle Filtering Methods

Particle filtering has been successfully used in target tracking applications when the state and measurement models are nonlinear and the associated noise is non-Gaussian. Among the most difficult scenarios of target tracking, are multiple target tracking (MTT) problems that require the application of realistic and often multiple kinematic models. Recently algorithms such as the independent par...

متن کامل

A New Modified Particle Filter With Application in Target Tracking

The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...

متن کامل

Performance of Target Detection in Phased-MIMO Radars

In this paper, the problem of target detection in phased-MIMO radars is considered and target detection performance of phased-MIMO radars is compared with MIMO and phased-array radars. Phased-MIMO radars combine advantages of the MIMO and phased-array radars. In these radars, the transmit array will be partitioned into a number of subarrays that are allowed to overlap and each subarray transmit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009